Contents

Edge Video Analytics Microservice Overview

Edge Video Analytics Microservice repo contains the source code for Edge Video Analytics Microservice (EVAM) used for the Video Analytics Use Case. For more information on how to build the use case, refer to the Get Started guide.


Build the Base Image

Complete the following steps to build the base image:

  1. Run the following command:

    docker compose build edge_video_analytics_microservice
    

Run the Base Image

Complete the following steps to run the base image:

  1. Run the following command to make the following files executable:

    chmod +x tools/model_downloader/model_downloader.sh docker/run.sh
    
  2. Download the required models. From the cloned repo, run the following command:

    sudo ./tools/model_downloader/model_downloader.sh  --model-list <Path to models.list.yml>
    
  3. After downloading the models, you will have the models directory in the base folder. Refer to the following:

    models/
    ├── action_recognition
    ├── emotion_recognition
    ├── face_detection_retail
    ├── object_classification
    └── object_detection
    
  4. Add the following lines in the docker-compose.yml environment if you are behind a proxy.

    - HTTP_PROXY=<IP>:<Port>/
    - HTTPS_PROXY=<IP>:<Port>/
    - NO_PROXY=localhost,127.0.0.1
    
  5. Run the sudo docker compose up command.

Note

For more details, refer to Run the Edge Video Analytics Microservice.


Gst-udf-loader (Gstreamer udfloader plugin)

gst-udf-loader gstreamer plugin supports loading and execution of python and native(c++) UDFs. UDFs are user defined functions which enables users to add any pre-processing or post-processing logic in the pipeline defined by EVAM. For more information on writing UDFs refer UDF writing guide

Element Properties:

config: udf config object

name: name of the object

To run inference using gst-udf-loader one would need to configure the below steps for each usecase:

  1. UDF source code at udfs([WORK_DIR]/IEdgeInsights/EdgeVideoAnalyticsMicroservice/user_scripts/udfs) - The udf should be compliant according to the steps mentioned in UDF writing guide

  2. UDF pipelines at pipelines([WORK_DIR]/IEdgeInsights/EdgeVideoAnalyticsMicroservice/pipelines) - This directory contains the pipelines and the pipeline version which contains the gstreamer pipeline for creating media pipelines


Sample REST requests for using gst-udf-loader element:

1. Dummy udf:

curl localhost:8080/pipelines/user_defined_pipelines/udfloader_sample -X POST -H 'Content-Type: application/json' -d '{
                "source": {
                    "uri": "file:///home/pipeline-server/resources/classroom.avi",
                    "type": "uri"
                },
                "destination": {
                    "metadata": {
                        "type": "file",
                        "path": "/tmp/results.jsonl",
                        "format": "json-lines"
                    }
                },
                "parameters": {
                    "generator": {
                        "udfs": [
                            {
                                "name": "python.dummy",
                                "type": "python"
                            }
                        ]
                    },
                    "publisher": {
                        "udfs": [
                            {
                                "name": "python.dummy_publisher",
                                "type": "python",
                                "address": "<publisher address>",
                                "topic": "<publisher topic>"
                            }
                        ]
                    }
                },
                "tags": {
                    "dummy_tag": "python dummy metadata generator"
                }
}'

2. GETi UDF

GETi udf takes the path of the deployment directory as the input for deploying a project for local inference. Refer the below example to see how the path of the deployment directory is specified in the udf config. As mentioned in the above steps make sure all the required resources are volume mounted to the EVAM service.

curl localhost:8080/pipelines/user_defined_pipelines/person_detection -X POST -H 'Content-Type: application/json' -d '{
                "source": {
                    "uri": "file:///home/pipeline-server/resources/classroom.avi",
                    "type": "uri"
                },
                "destination": {
                   "metadata": {
                        "type": "file",
                        "path": "/tmp/results.jsonl",
                        "format": "json-lines"
                    },
                    "frame": {
                        "type": "rtsp",
                        "path": "person-detection"
                    }
                },
                "parameters": {
                    "detection": {
                        "udfs": [
                            {
                                "name": "python.geti_udf.geti_udf",
                                "type": "python",
                                "device": "CPU",
                                "visualize": "true",
                                "deployment": "./resources/geti/person_detection/deployment",
                                "metadata_converter": "null"
                            }
                        ]
                    }
                }
}'

Note

  • For more information on Intel® Geti™ SDK refer geti-sdk-docs


Sample REST request for using cameras:

1. GenICam USB3 Vision cameras

  • Enter serial number of the camera and other applicable properties (if required) in gencamsrc-sample-pipeline([WORK_DIR]/IEdgeInsights/EdgeVideoAnalyticsMicroservice/pipelines/user_defined_pipelines/gencamsrc_sample/pipeline.json) before starting edge_video_analytics_microservice service.

curl localhost:8080/pipelines/user_defined_pipelines/gencamsrc_sample -X POST -H 'Content-Type: application/json' -d '{
                "source": {
                    "element": "gencamsrc",
                    "type": "gst"
                },
                "destination": {
                    "metadata": {
                        "type": "file",
                        "path": "/tmp/results.jsonl",
                        "format": "json-lines"
                    }
                },
                 "parameters": {
                    "generator": {
                        "udfs": [
                            {
                                "name": "python.dummy",
                                "type": "python"
                            }
                        ]
                    }
                }

}'

2. GenICam GigE Vision cameras

Pre-requisites for using GenICam compliant GigE vision camera:

  • Add network_mode: host for edge_video_analytics_microservice in the docker-compose.yml([WORK_DIR]/IEdgeInsights/EdgeVideoAnalyticsMicroservice/docker-compose.yml) file and comment/remove networks and ports sections by referring the below snip:

edge_video_analytics_microservice:
  # Add network mode host
  network_mode: host
  image: intel/edge_video_analytics_microservice:1.1.0
  hostname: edge_video_analytics_microservice
  container_name: edge_video_analytics_microservice
  build:
    context: .
    dockerfile: Dockerfile
    args:
      CMLIB_VERSION: "4.0.1"
      EII_UID: 1999
      USER: "eiiuser"
      EII_SOCKET_DIR: "/opt/intel/eii/sockets"
      BASE_IMAGE: "ubuntu:22.04"
      PKG_SRC: ${PKG_SRC}
      MSGBUS_WHL: "eii_msgbus-4.0.0-cp310-cp310-manylinux2014_x86_64.whl"
      CFGMGR_WHL: "eii_configmgr-4.0.1-cp310-cp310-manylinux2014_x86_64.whl"
      CMAKE_INSTALL_PREFIX: "/opt/intel/eii"
      # Download sources for GPL/LGPL/AGPL binary distributed components (yes/no)
      DOWNLOAD_GPL_SOURCES: "no"
  privileged: false
  tty: true
  entrypoint: ["./run.sh"]
  # Comment or remove ports and networks section as it would conflict with `network_mode: host`
  #ports:
  #  - '8080:8080'
  #  - '8554:8554'
  #networks:
  #  - app_network
  • Enter serial number of the camera and other applicable properties (if required) in gencamsrc-sample-pipeline([WORK_DIR]/IEdgeInsights/EdgeVideoAnalyticsMicroservice/pipelines/user_defined_pipelines/gencamsrc_sample/pipeline.json) before starting edge_video_analytics_microservice service.

curl localhost:8080/pipelines/user_defined_pipelines/gencamsrc_sample -X POST -H 'Content-Type: application/json' -d '{
                "source": {
                    "element": "gencamsrc",
                    "type": "gst"
                },
                "destination": {
                    "metadata": {
                        "type": "file",
                        "path": "/tmp/results.jsonl",
                        "format": "json-lines"
                    }
                },
                 "parameters": {
                    "generator": {
                        "udfs": [
                            {
                                "name": "python.dummy",
                                "type": "python"
                            }
                        ]
                    }
                }

}'

3. RTSP cameras

Enter RTSP URI in rtsp-pipeline([WORK_DIR]/IEdgeInsights/EdgeVideoAnalyticsMicroservice/pipelines/user_defined_pipelines/rtsp_sample/pipeline.json) before starting edge_video_analytics_microservice service

curl localhost:8080/pipelines/user_defined_pipelines/rtsp_sample -X POST -H 'Content-Type: application/json' -d '{
                "source": {
                    "element": "rtspsrc",
                    "type": "gst"
                },
                "destination": {
                    "metadata": {
                        "type": "file",
                        "path": "/tmp/results.jsonl",
                        "format": "json-lines"
                    }
                },
                 "parameters": {
                    "generator": {
                        "udfs": [
                            {
                                "name": "python.dummy",
                                "type": "python"
                            }
                        ]
                    }
                }

}'

4. USB v4l2 cameras

Enter the appropriate device node in usb-v4l2src-pipeline([WORK_DIR]/IEdgeInsights/EdgeVideoAnalyticsMicroservice/pipelines/user_defined_pipelines/usb_v4l2_sample/pipeline.json) before starting edge_video_analytics_microservice service

curl localhost:8080/pipelines/user_defined_pipelines/usb_v4l2_sample -X POST -H 'Content-Type: application/json' -d '{
                "source": {
                    "element": "v4l2src",
                    "type": "gst"
                },
                "destination": {
                    "metadata": {
                        "type": "file",
                        "path": "/tmp/results.jsonl",
                        "format": "json-lines"
                    }
                },
                 "parameters": {
                    "generator": {
                        "udfs": [
                            {
                                "name": "python.dummy",
                                "type": "python"
                            }
                        ]
                    }
                }

}'

Note

For more infomation on camera configuration refer camera-configurations


Sample REST request for using image ingestion:

Volume mount the directory containing the images and make sure the images follow the required naming conventions.

curl localhost:8080/pipelines/user_defined_pipelines/image_ingestion_sample -X POST -H 'Content-Type: application/json' -d '{
                "source": {
                    "element": "multifilesrc",
                    "type": "gst"
                },
                "destination": {
                    "metadata": {
                        "type": "file",
                        "path": "/tmp/results.jsonl",
                        "format": "json-lines"
                    }
                },
                 "parameters": {
                    "generator": {
                        "udfs": [
                            {
                                "name": "python.dummy",
                                "type": "python"
                            }
                        ]
                    }
                }

}'

Note

For more infomation on image ingestion refer image-ingestion



Run EVAM in EII Mode

To run EVAM in the EII mode, refer to the README.